Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Technique
  6. Technologie mécanique & Matériaux
  7. Krümmungseigenschaften Sphärischer Bahnkurven Im Hinblick Auf Ihre Anwendungen

Krümmungseigenschaften Sphärischer Bahnkurven Im Hinblick Auf Ihre Anwendungen

Günter Dittrich
54,45 €
+ 108 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Eine Kurve, deren Punkte sich aIle auf einer Kugeloberflache befinden, nennt man spharische Kurve. 1st sie als geometrischer Ort der aufeinanderfolgenden Lagen eines sich auf der Kugeloberflache bewegenden Punktes anzusehen, so spricht man von einer spharischen Bah n k u r v e. Solche Kur- ven werden von den Punk ten eines sich spharisch bewegenden starren Systems durchlaufen. Ein derartiges System ist dadurch gekennzeichnet, daB einer seiner Punkte in einem Bezugssystem ruht und daB die Bewegung gegenUber dem Bezugssystem urn die- sen festen Punkt stattfindet. Da sich die Abstande der Punkte des starren Systems untereinander und folglich auch zu dem Festpunkt nicht andern, bewegen sich aIle seine Punkte auf Ku- gelflachen mit dem gemeinsamen Mittelpunkt im Fixpunkt. Spharisch bewegte Systeme sind im Maschinenbau als Glieder spharischer Getriebe (z.B. Kurbel- und Radergetriebe) anzu- treffen. Die Bahnkurven der Punkte dieser Getriebeglieder (insbesondere Koppelkurven und Radlinien) sind von besonderem praktischem Interesse. Aufgrund ihresFormenreichturns ist es naheliegend, sie, wie es fUr ihre ebenen Entsprechungen schon seit langem zutrifft, bei der Entwicklung von FUhrungsgetrie- ben oder von speziellen Ubertragungsgetrieben (z.B. Rastge- trieben) zu verwenden.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
80
Langue:
Allemand
Collection :
Tome:
n° 3086

Caractéristiques

EAN:
9783531030869
Date de parution :
01-01-81
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
170 mm x 244 mm
Poids :
154 g

Les avis