•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Large Scale Hierarchical Classification: State of the Art

Azad Naik, Huzefa Rangwala
Livre broché | Anglais | Springerbriefs in Computer Science
52,95 €
+ 105 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

This SpringerBrief covers the technical material related to large scale hierarchical classification (LSHC). HC is an important machine learning problem that has been researched and explored extensively in the past few years. In this book, the authors provide a comprehensive overview of various state-of-the-art existing methods and algorithms that were developed to solve the HC problem in large scale domains. Several challenges faced by LSHC is discussed in detail such as:

1. High imbalance between classes at different levels of the hierarchy

2. Incorporating relationships during model learning leads to optimization issues

3. Feature selection

4. Scalability due to large number of examples, features and classes

5. Hierarchical inconsistencies

6. Error propagation due to multiple decisions involved in making predictions for top-down methods

The brief also demonstrates how multiple hierarchies can be leveraged for improving the HC performance using different Multi-Task Learning (MTL) frameworks.

The purpose of this book is two-fold:

1. Help novice researchers/beginners to get up to speed by providing a comprehensive overview of several existing techniques.

2. Provide several research directions that have not yet been explored extensively to advance the research boundaries in HC.

New approaches discussed in this book include detailed information corresponding to the hierarchical inconsistencies, multi-task learning and feature selection for HC. Its results are highly competitive with the state-of-the-art approaches in the literature.


Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
93
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9783030016197
Date de parution :
12-10-18
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
167 g

Les avis