Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Dans ce livre, on s'intéresse au problème du plus court chemin entre deux sommets donnés dans des graphes orientés pouvant comporter des circuits absorbants. On commence par étudier des formulations de ce problème en programmation linéaire à variables entières et mixtes. Une des formulations, dite "compacte", a le double avantage de nécessiter un nombre polynomial de contraintes et de constituer, comme le montrent nos expérimentations, une relaxation plus forte en moyenne. Dans le but de résoudre le problème efficacement, on étudie ensuite la possibilité de générer des inégalités valides. On montre la difficulté potentielle liée au problème de séparation de ces inégalités. En revanche, combinées à des techniques de lifting, ces inégalités valides seront exploitables. Nos expérimentations effectuées sur une série de graphes de tailles allant jusqu'à 200 sommets montrent en particulier que le renforcement itératif par les inégalités liftées permet d'obtenir la solution optimale entière en moins de dix itérations pour plus de 50% des exemples considérés. Mots clés : Programmation linéaire, Graphe, Plus court chemin, Inégalités valides, Séparation, Lifting.