Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Learning Theory from First Principles

Francis Bach
111,95 €
+ 223 points
Pré-commander, date de disponibilité inconnue
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

A comprehensive and cutting-edge introduction to the foundations and modern applications of learning theory.

Research has exploded in the field of machine learning resulting in complex mathematical arguments that are hard to grasp for new comers. . In this accessible textbook, Francis Bach presents the foundations and latest advances of learning theory for graduate students as well as researchers who want to acquire a basic mathematical understanding of the most widely used machine learning architectures. Taking the position that learning theory does not exist outside of algorithms that can be run in practice, this book focuses on the theoretical analysis of learning algorithms as it relates to their practical performance. Bach provides the simplest formulations that can be derived from first principles, constructing mathematically rigorous results and proofs without overwhelming students.

  • Provides a balanced and unified treatment of most prevalent machine learning methods
  • Emphasizes practical application and features only commonly used algorithmic frameworks
  • Covers modern topics not found in existing texts, such as overparameterized models and structured prediction
  • Integrates coverage of statistical theory, optimization theory, and approximation theory
  • Focuses on adaptivity, allowing distinctions between various learning techniques
  • Hands-on experiments, illustrative examples, and accompanying code link theoretical guarantees to practical behaviors

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
496
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9780262049443
Date de parution :
24-12-24
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
176 mm x 230 mm
Poids :
1111 g

Les avis