Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Qui a inventé le concept de fractale ? À quoi servent-elles ?
Apparues au XIXe siècle, les fractales furent considérées comme des curiosités mathématiques jusqu’au milieu du XXe siècle. Pourtant, nous pouvons voir des fractales partout… Cette géométrie est une extension de la géométrie classique qui peut faire des modèles précis de structures physiques comme des fougères ou des galaxies. La géométrie fractale est une nouvelle langue. Une fois que vous la parlez, vous pouvez décrire la forme d’un nuage aussi précisément qu’un architecte peut décrire une maison. Ce petit ouvrage retrace l’évolution historique de cette discipline mathématique, explore ses pouvoirs descriptifs dans le monde naturel, puis se penche sur les applications et les implications qu’elle a induites.