Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Machine Learning Algorithms

A reference guide to popular algorithms for data science and machine learning

Giuseppe Bonaccorso
Livre broché | Anglais
55,95 €
+ 111 points
Livraison 1 à 2 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide


Key Features:

- Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide.

- Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation.

- Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide.



Book Description:

In this book, you will learn all the important machine learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. The algorithms that are covered in this book are linear regression, logistic regression, SVM, naïve Bayes, k-means, random forest, TensorFlow and feature engineering.


In this book, you will how to use these algorithms to resolve your problems, and how they work. This book will also introduce you to natural language processing and recommendation systems, which help you to run multiple algorithms simultaneously.


On completion of the book, you will know how to pick the right machine learning algorithm for clustering, classification, or regression for your problem



What You Will Learn:

- Acquaint yourself with the important elements of machine learning

- Understand the feature selection and feature engineering processes

- Assess performance and error trade-offs for linear regression

- Build a data model and understand how it

- Learn to tune the parameters of SVMs

- Implement clusters in a dataset

- Explore the concept of Natural Processing Language and Recommendation Systems

- Create a machine learning architecture from scratch



Who this book is for:

This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
360
Langue:
Anglais

Caractéristiques

EAN:
9781785889622
Date de parution :
24-07-17
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
190 mm x 235 mm
Poids :
616 g

Les avis