•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Economie & Management
  5. Secteurs industriels
  6. Agriculture
  7. Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector

Machine Learning Approaches for Evaluating Statistical Information in the Agricultural Sector

Vitor Joao Pereira Domingues Martinho
47,45 €
+ 94 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

This book presents machine learning approaches to identify the most important predictors of crucial variables for dealing with the challenges of managing production units and designing agriculture policies. The book focuses on the agricultural sector in the European Union and considers statistical information from the Farm Accountancy Data Network (FADN).

Presently, statistical databases present a lot of information for many indicators and, in these contexts, one of the main tasks is to identify the most important predictors of certain indicators. In this way, the book presents approaches to identifying the most relevant variables that best support the design of adjusted farming policies and management plans. These subjects are currently important for students, public institutions and farmers. To achieve these objectives, the book considers the IBM SPSS Modeler procedures as well as the respective models suggested by this software.

The book is read by students in production engineering, economics and agricultural studies, public bodies and managers in the farming sector.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
135
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9783031546075
Date de parution :
22-02-24
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
217 g

Les avis