•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Machine Learning – Die Referenz EBOOK

Mit strukturierten Daten in Python arbeiten

Matt Harrison
Ebook | Allemand
29,90 €
+ 29 points
Disponible immédiatement
Passer une commande en un clic
Payer en toute sécurité

Description

Das praktische Nachschlagewerk zum Machine Learning mit strukturierten Daten
Konzentriert sich auf Themen, die für den praktizierenden Machine-Learning-Anwender interessant sind
Enthält eine große Anzahl wertvoller Codebeispiele für strukturierte Daten, die in der Praxis konkret weiterhelfen/ul>
Zeigt, wie verschiedene Bibliotheken zur Lösung praktischer Fragestellungen eingesetzt werden
Diese praktische Referenz ist eine Sammlung von Methoden, Ressourcen und Codebeispielen zur Lösung gängiger Machine-Learning-Probleme mit strukturierten Daten. Der Autor Matt Harrison hat einen wertvollen Leitfaden zusammengestellt, den Sie als zusätzliche Unterstützung während eines Machine-Learning-Kurses nutzen können oder als Nachschlagewerk, wenn Sie Ihr nächstes ML-Projekt mit Python starten.
Das Buch ist ideal für Data Scientists, Softwareentwickler und Datenanalysten, die Machine Learning praktisch anwenden. Es bietet einen Überblick über den kompletten Machine-Learning-Prozess und führt Sie durch die Klassifizierung strukturierter Daten. Sie lernen dann unter anderem Methoden zur Modellauswahl, zur Regression, zur Reduzierung der Dimensionalität und zum Clustering kennen. Die Codebeispiele sind so kompakt angelegt, dass Sie sie für Ihre eigenen Projekte verwenden und auch gut anpassen können.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
246
Langue:
Allemand

Caractéristiques

EAN:
9783960104094
Date de parution :
27-10-20
Format:
Ebook
Protection digitale:
Digital watermarking
Format numérique:
ePub

Les avis