Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Machine Learning in Microservices

Productionizing microservices architecture for machine learning solutions

Mohamed Abouahmed, Omar Ahmed
Livre broché | Anglais
61,45 €
+ 122 points
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Implement real-world machine learning in a microservices architecture as well as design, build, and deploy intelligent microservices systems using examples and case studies

Purchase of the print or Kindle book includes a free PDF eBook


Key Features:

  • Design, build, and run microservices systems that utilize the full potential of machine learning
  • Discover the latest models and techniques for combining microservices and machine learning to create scalable systems
  • Implement machine learning in microservices architecture using open source applications with pros and cons


Book Description:

With the rising need for agile development and very short time-to-market system deployments, incorporating machine learning algorithms into decoupled fine-grained microservices systems provides the perfect technology mix for modern systems. Machine Learning in Microservices is your essential guide to staying ahead of the curve in this ever-evolving world of technology.

The book starts by introducing you to the concept of machine learning microservices architecture (MSA) and comparing MSA with service-based and event-driven architectures, along with how to transition into MSA. Next, you'll learn about the different approaches to building MSA and find out how to overcome common practical challenges faced in MSA design. As you advance, you'll get to grips with machine learning (ML) concepts and see how they can help better design and run MSA systems. Finally, the book will take you through practical examples and open source applications that will help you build and run highly efficient, agile microservices systems.

By the end of this microservices book, you'll have a clear idea of different models of microservices architecture and machine learning and be able to combine both technologies to deliver a flexible and highly scalable enterprise system.


What You Will Learn:

  • Recognize the importance of MSA and ML and deploy both technologies in enterprise systems
  • Explore MSA enterprise systems and their general practical challenges
  • Discover how to design and develop microservices architecture
  • Understand the different AI algorithms, types, and models and how they can be applied to MSA
  • Identify and overcome common MSA deployment challenges using AI and ML algorithms
  • Explore general open source and commercial tools commonly used in MSA enterprise systems


Who this book is for:

This book is for machine learning solution architects, system and machine learning developers, and system and solution integrators of private and public sector organizations. Basic knowledge of DevOps, system architecture, and artificial intelligence (AI) systems is assumed, and working knowledge of the Python programming language is highly desired.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
270
Langue:
Anglais

Caractéristiques

EAN:
9781804617748
Date de parution :
10-03-23
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
190 mm x 235 mm
Poids :
467 g

Les avis