•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Machine Learning Systems EBOOK

Designs that scale

Jeffrey Smith
Ebook | Anglais
39,13 €
+ 39 points
Disponible immédiatement
Passer une commande en un clic
Payer en toute sécurité

Description

Summary

Machine Learning Systems: Designs that scale is an example-rich guide that teaches you how to implement reactive design solutions in your machine learning systems to make them as reliable as a well-built web app.

Foreword by Sean Owen, Director of Data Science, Cloudera

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the Technology

If you’re building machine learning models to be used on a small scale, you don't need this book. But if you're a developer building a production-grade ML application that needs quick response times, reliability, and good user experience, this is the book for you. It collects principles and practices of machine learning systems that are dramatically easier to run and maintain, and that are reliably better for users.

About the Book

Machine Learning Systems: Designs that scale teaches you to design and implement production-ready ML systems. You'll learn the principles of reactive design as you build pipelines with Spark, create highly scalable services with Akka, and use powerful machine learning libraries like MLib on massive datasets. The examples use the Scala language, but the same ideas and tools work in Java, as well.

What's Inside
Working with Spark, MLlib, and Akka Reactive design patterns Monitoring and maintaining a large-scale system Futures, actors, and supervision
About the Reader

Readers need intermediate skills in Java or Scala. No prior machine learning experience is assumed.

About the Author

Jeff Smith builds powerful machine learning systems. For the past decade, he has been working on building data science applications, teams, and companies as part of various teams in New York, San Francisco, and Hong Kong. He blogs (https: //medium.com/@jeffksmithjr), tweets (@jeffksmithjr), and speaks (www.jeffsmith.tech/speaking) about various aspects of building real-world machine learning systems.

Table of Contents

PART 1 - FUNDAMENTALS OF REACTIVE MACHINE LEARNING
Learning reactive machine learning Using reactive tools
PART 2 - BUILDING A REACTIVE MACHINE LEARNING SYSTEM
Collecting data Generating features Learning models Evaluating models Publishing models Responding
PART 3 - OPERATING A MACHINE LEARNING SYSTEM
Delivering Evolving intelligence
 

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
224
Langue:
Anglais

Caractéristiques

EAN:
9781638355366
Date de parution :
20-05-18
Format:
Ebook
Protection digitale:
Adobe DRM
Format numérique:
ePub

Les avis