•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Markov Chain Monte Carlo

Stochastic Simulation for Bayesian Inference, Second Edition

Dani Gamerman, Hedibert Freita Lopes, Hedibert F Lopes
135,95 €
+ 271 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition presents a concise, accessible, and comprehensive introduction to the methods of this valuable simulation technique. The second edition includes access to an internet site that provides the code, written in R and WinBUGS, used in many of the previously existing and new examples and exercises. More importantly, the self-explanatory nature of the codes will enable modification of the inputs to the codes and variation on many directions will be available for further exploration.

Major changes from the previous edition:

- More examples with discussion of computational details in chapters on Gibbs sampling and Metropolis-Hastings algorithms

- Recent developments in MCMC, including reversible jump, slice sampling, bridge sampling, path sampling, multiple-try, and delayed rejection

- Discussion of computation using both R and WinBUGS

- Additional exercises and selected solutions within the text, with all data sets and software available for download from the Web

- Sections on spatial models and model adequacy

The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. The book will appeal to everyone working with MCMC techniques, especially research and graduate statisticians and biostatisticians, and scientists handling data and formulating models. The book has been substantially reinforced as a first reading of material on MCMC and, consequently, as a textbook for modern Bayesian computation and Bayesian inference courses.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
342
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9781584885870
Date de parution :
10-05-06
Format:
Livre relié
Format numérique:
Ongenaaid / garenloos gebonden
Dimensions :
155 mm x 242 mm
Poids :
607 g

Les avis