Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
There seems to be no doubt that geometry originates from such practical activ- ities as weather observation and terrain survey. But there are different manners, methods, and ways to raise the various experiences to the level of theory so that they finally constitute a science. F. Engels said, "The objective of mathematics is the study of space forms and quantitative relations of the real world. " Dur- ing the time of the ancient Greeks, there were two different methods dealing with geometry: one, represented by the Euclid's "Elements," purely pursued the logical relations among geometric entities, excluding completely the quantita- tive relations, as to establish the axiom system of geometry. This method has become a model of deduction methods in mathematics. The other, represented by the relevant work of Archimedes, focused on the study of quantitative re- lations of geometric objects as well as their measures such as the ratio of the circumference of a circle to its diameter and the area of a spherical surface and of a parabolic sector. Though these approaches vary in style, have their own features, and reflect different viewpoints in the development of geometry, both have made great contributions to the development of mathematics. The development of geometry in China was all along concerned with quanti- tative relations.