•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

MLOps - Kernkonzepte im Überblick

Machine-Learning-Prozesse im Unternehmen nachhaltig automatisieren und skalieren

Mark Treveil
Livre broché | Allemand | Animals
34,45 €
+ 68 points
Format
Livraison 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Erfolgreiche ML-Pipelines entwickeln und mit MLOps organisatorische Herausforderungen meistern
  • Stellt DevOps-Konzepte vor, die die speziellen Anforderungen von ML-Anwendungen berücksichtigen
  • Umfasst die Verwaltung, Bereitstellung, Skalierung und Überwachung von Machine-Learning-Modellen im Unternehmensumfeld
  • Für Data Scientists und Data Engineers, die nach besseren Strategien für den produktiven Einsatz ihrer ML-Modelle suchen

Machine-Learning-Modelle zu entwickeln ist das eine, sie im Produktivbetrieb effizient einzusetzen, eine ebenfalls nicht zu unterschätzende Herausforderung - so die Erfahrung vieler Unternehmen. Dieses Buch zeigt Ihnen, wie Sie mithilfe durchdachter MLOps-Strategien eine stabile DevOps-Umgebung für Ihre ML-Anwendungen aufbauen, Ihre Modelle kontinuierlich verbessern und langfristig warten.

Das Buch erläutert MLOps-Schlüsselkonzepte, mit denen Data Scientists und Data Engineers ML-Pipelines und -Workflows optimieren können. Anhand von Fallbeispielen aus der ganzen Welt geben neun ML-Experten praxiserprobte Hilfestellungen zu den fünf Schritten des Modelllebenszyklus - Entwicklung, Preproduction, Deployment, Monitoring und Governance. Sie erfahren auf diese Weise, wie robuste MLOps-Prozesse umfassend in den ML-Produktworkflow integriert werden können.

  • Erschließen Sie den Wert Ihrer Data-Science-Anwendungen für Ihr Unternehmen vollständig, indem Sie Störfaktoren in ML-Pipelines und -Workflows ausräumen
  • Verfeinern Sie Ihre ML-Modelle durch Retraining, regelmäßiges Tuning und grundlegende Überarbeitung, um eine dauerhaft hohe Qualität zu gewährleisten
  • Organisieren Sie den MLOps-Lebenszyklus so, dass Risiken, die in den Modellen stecken könnten, minimiert werden, damit die Ergebnisse unverzerrt, ausgewogen und nachvollziehbar sind
  • Optimieren Sie ML-Modelle nicht nur für die eigene Deployment-Pipeline, sondern auch für externe Partner, deren Systeme komplexer und weniger standardisiert sind

»Wenn Sie auf der Suche nach Strategien sind, um die konkreten Prozesse der ML-Entwicklung zwischen den Teams zu verbessern, ist dieses Buch genau das Richtige für Sie.«

- Adi Polak, Senior Software Engineer, Microsoft

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
204
Langue:
Allemand
Collection :

Caractéristiques

EAN:
9783960091721
Date de parution :
25-08-21
Format:
Livre broché
Dimensions :
167 mm x 13 mm
Poids :
392 g

Les avis