•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Multilinear Subspace Learning

Dimensionality Reduction of Multidimensional Data

Haiping Lu, Konstantinos N Plataniotis, Anastasios Venetsanopoulos
141,95 €
+ 283 points
Livraison 1 à 2 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniques. Addressing this need, multilinear subspace learning (MSL) reduces the dimensionality of big data directly from its natural multidimensional representation, a tensor.

Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data gives a comprehensive introduction to both theoretical and practical aspects of MSL for the dimensionality reduction of multidimensional data based on tensors. It covers the fundamentals, algorithms, and applications of MSL.

Emphasizing essential concepts and system-level perspectives, the authors provide a foundation for solving many of today's most interesting and challenging problems in big multidimensional data processing. They trace the history of MSL, detail recent advances, and explore future developments and emerging applications.

The book follows a unifying MSL framework formulation to systematically derive representative MSL algorithms. It describes various applications of the algorithms, along with their pseudocode. Implementation tips help practitioners in further development, evaluation, and application. The book also provides researchers with useful theoretical information on big multidimensional data in machine learning and pattern recognition. MATLAB(R) source code, data, and other materials are available at www.comp.hkbu.edu.hk/ haiping/MSL.html

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
296
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9781439857243
Date de parution :
11-12-13
Format:
Livre relié
Format numérique:
Genaaid
Dimensions :
157 mm x 236 mm
Poids :
589 g

Les avis