•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Natural Language Annotation for Machine Learning

A Guide to Corpus-Building for Applications

James Pustejovsky, Amber Stubbs
Livre broché | Anglais
57,95 €
+ 115 points
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Create your own natural language training corpus for machine learning. Whether you're working with English, Chinese, or any other natural language, this hands-on book guides you through a proven annotation development cycle--the process of adding metadata to your training corpus to help ML algorithms work more efficiently. You don't need any programming or linguistics experience to get started.

Using detailed examples at every step, you'll learn how the MATTER Annotation Development Process helps you Model, Annotate, Train, Test, Evaluate, and Revise your training corpus. You also get a complete walkthrough of a real-world annotation project.

  • Define a clear annotation goal before collecting your dataset (corpus)
  • Learn tools for analyzing the linguistic content of your corpus
  • Build a model and specification for your annotation project
  • Examine the different annotation formats, from basic XML to the Linguistic Annotation Framework
  • Create a gold standard corpus that can be used to train and test ML algorithms
  • Select the ML algorithms that will process your annotated data
  • Evaluate the test results and revise your annotation task
  • Learn how to use lightweight software for annotating texts and adjudicating the annotations

This book is a perfect companion to O'Reilly's Natural Language Processing with Python.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
339
Langue:
Anglais

Caractéristiques

EAN:
9781449306663
Date de parution :
04-12-12
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
180 mm x 229 mm
Poids :
548 g

Les avis