Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
1. Introduction.- 1.1. Near-Field Optics and Photonics.- 1.1.1. Optical Processes and Electromagnetic Interactions.- 1.2. Ultra-High-Resolution Near-Field Optical Microscopy (NOM).- 1.2.1. From Interference- to Interaction-Type Optical Microscopy.- 1.2.2. Development of Near-Field Optical Microscopy and Related Techniques.- 1.3. General Features of Optical Near-Field Problems.- 1.3.1. Optical Processes and the Scale of Interest.- 1.3.2. Effective Fields and Interacting Subsystems.- 1.3.3. Electromagnetic Interaction in a Dielectric System.- 1.3.4. Optical Near-Field Measurements.- 1.4. Theoretical Treatment of Optical Near-Field Problems.- 1.4.1. Near-Field Optics and Inhomogeneous Waves.- 1.4.2. Field-Theoretic Treatment of Optical Near-Field Problems.- 1.4.3. Explicit Treatment of Field-Matter Interaction.- 1.5. Remarks on Near-Field Optics and Outline of This Book.- 1.5.1. Near-Field Optics and Related Problems.- 1.5.2. Outline of This Book.- 1.6. References.- 2. Principles of Near-Field Optical Microscopy.- 2.1. An Example of Near-Field Optical Microscopy.- 2.2. Construction of the NOM System.- 2.2.1. Building Blocks of the NOM System.- 2.2.2. Environmental Conditions.- 2.2.3. Functions of the Building Blocks.- 2.3. Theoretical Description of Near-Field Optical Microscopy.- 2.3.1. Basic Character of the NOM Process.- 2.3.3. Demonstration of Localization in the Near-Field Interaction.- 2.3.4. Representation of the Spatial Localization of an Electromagnetic Event.- 2.3.5. Model Description of a Local Electromagnetic Interaction.- 2.4. Near-Field Problems and the Tunneling Process.- 2.4.1. Bardeen's Description of Tunneling Current in STM.- 2.4.2. Comparison of the Theoretical Aspects of NOM and STM.- 2.5. References.- 3. Instrumentation.- 3.1. Basic Systems of a Near-Field Optical Microscope.- 3.1.1. Modes of Operation.- 3.1.2. Position Control of the Probe.- 3.1.3. Mechanical Components.- 3.1.4. Noise Sources Internal to the NOM.- 3.1.5. Operation under Special Circumstances.- 3.2. Light Sources.- 3.2.1. Basic Properties of Lasers.- 3.2.2. Characteristics of CW Lasers.- 3.2.3. Additional Noise Properties of CW Lasers.- 3.2.4. Short-Pulse Generation.- 3.2.5. Nonlinear Optical Wavelength Conversion.- 3.3. Light Detection and Signal Amplification.- 3.3.1. Detector.- 3.3.2. Signal Detection and Amplification.- 3.4. References.- 4. Fabrication of Probes.- 4.1. Sharpening of Fibers by Chemical Etching.- 4.1.1. A Basic Sharpened Fiber.- 4.1.2. A Sharpened Fiber with Reduced-Diameter Cladding.- 4.1.3. A Pencil-Shaped Fiber.- 4.1.4. A Flattened-Top Fiber.- 4.1.5. A Double-Tapered Fiber.- 4.2. Metal Coating and Fabrication of a Protruded Probe.- 4.2.1. Removal of Metallic Film by Selective Resin Coating.- 4.2.2. Removal of Metallic Film by Nanometric Photolithography.- 4.3. Other Novel Probes.- 4.3.1. Functional Probes.- 4.3.2. Optically Trapped Probes.- 4.4. References.- 5. Imaging Experiments.- 5.1. Basic Features of the Localized Evanescent Field.- 5.1.1. Size-Dependent Decay Length of the Field Intensity.- 5.1.2. Manifestation of the Short-Range Electromagnetic Interaction.- 5.1.3. High Discrimination Sensitivity of the Evanescent Field Intensity Normal to the Surface.- 5.2. Imaging Biological Samples.- 5.2.1. Imaging by the C-Mode.- 5.2.2. Imaging by the I-Mode.- 5.3. Spatial Power Spectral Analysis of the NOM Image.- 5.4. References.- 6. Diagnostics and Spectroscopy of Photonic Devices and Materials.- 6.1. Diagnosing a Dielectric Optical Waveguide.- 6.2. Spatially Resolved Spectroscopy of Lateral p-n Junctions in Silicon-Doped Gallium Arsenide.- 6.2.1. Photoluminescence and Electroluminescence Spectroscopy.- 6.2.2. Photocurrent Measurement by Multiwavelength NOM.- 6.3. Photoluminescence Spectroscopy of a Semiconductor Quantum Dot.- 6.4. Imaging of Other Materials.- 6.4.1. Fluorescence Detection from Dye Molecules.- 6.4.2. Spectroscopy of Solid-State Materials.- 6.5. References.- 7. Fabrication and Manipulation.- 7.1. Fabrica...