•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Mathématiques
  6. Statistiques
  7. Numerical Integration of Space Fractional Partial Differential Equations

Numerical Integration of Space Fractional Partial Differential Equations

Vol 2 - Applications from Classical Integer Pdes

Younes Salehi, William E Schiesser
63,45 €
+ 126 points
Format
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as:

  • Vol 1: Introduction to Algorithms and Computer Coding in R
  • Vol 2: Applications from Classical Integer PDEs.

Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative.

In the second volume, the emphasis is on applications of SFPDEs developed mainly through the extension of classical integer PDEs to SFPDEs. The example applications are:

  • Fractional diffusion equation with Dirichlet, Neumann and Robin boundary conditions
  • Fisher-Kolmogorov SFPDE
  • Burgers SFPDE
  • Fokker-Planck SFPDE
  • Burgers-Huxley SFPDE
  • Fitzhugh-Nagumo SFPDE

These SFPDEs were selected because they are integer first order in time and integer second order in space. The variation in the spatial derivative from order two (parabolic) to order one (first order hyperbolic) demonstrates the effect of the spatial fractional order ���� with 1

The examples start with a statement of the integer PDEs that are then extended to SFPDEs. The format of each chapter is the same as in the first volume.

The R routines can be downloaded and executed on a modest computer (R is readily available from the Internet).

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
192
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9783031012846
Date de parution :
06-12-17
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
191 mm x 235 mm
Poids :
400 g

Les avis