Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Boolean control networks (BCNs) are a kind of parameter-free model, which can be used to approximate the qualitative behavior of biological systems. After converting into a model similar to the standard discrete-time state-space model, control-theoretic problems of BCNs can be studied. In control theory, state observers can provide state estimation for any other applications. Reconstructibility condition is necessary for the existence of state observers. In this thesis explicit and recursive methods have been developed for reconstructibility analysis. Then, an approach to design Luenberger-like observer has been proposed, which works in a two-step process (i.e. predict and update). If a BCN is reconstructible, then an accurate state estimate can be provided by the observer no later than the minimal reconstructibility index. For a wide range of applications the approach has been extended to enable design of unknown input observer, distributed observers and reduced-order observer. The performance of the observers has been evaluated thoroughly. Furthermore, methods for output tracking control and fault diagnosis of BCNs have been developed. Finally, the developed schemes are tested with numerical examples.