Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Nos liseuses Vivlio rencontrent actuellement des problèmes de synchronisation. Nous faisons tout notre possible pour résoudre ce problème le plus rapidement possible. Toutes nos excuses pour la gêne occasionnée !
Retrait gratuit dans votre magasin Club
7.000.000 titres dans notre catalogue
Payer en toute sécurité
Toujours un magasin près de chez vous
Nos liseuses Vivlio rencontrent actuellement des problèmes de synchronisation. Nous faisons tout notre possible pour résoudre ce problème le plus rapidement possible. Toutes nos excuses pour la gêne occasionnée !
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
On April 20, 1951, Léon Van Hove presented his thesis "Sur certaines représentations unitaires d'un groupe infini de transformations' to the Université libre de Bruxelles (Free University of Brussels), two days before the University of Grenoble had approved the creation of L'Ecole d'été de physique théorique at Les Houches (Haute Savoie, France). The first session of the "Ecole des Houches" began on July 15, 1951, with a month-long course by Van Hove on quantum mechanics. The lecture notes for this course were written for the benefit of physicists who -- like most of their colleagues outside the US, Canada, and England at that time -- did not know quantum mechanics but wanted to learn it seriously. Van Hove's course met their expectations fully. The physics course benefitted from the mathematical expertise of the lecturer, which is also apparent in this thesis. Without his own research as scaffolding, Van Hove could not have built the short and beautiful course which provided the participants with a solid, useful foundation in modern physics.The lecture notes are in French. If they had been in English they would have been published together with the translation of the thesis. The first three pages of the notes are reproduced at the end of this book. The set of notes was reproduced by stencils and distributed to the participants at the beginning of the course.The translation of Léon Van Hove's thesis was initiated in late 2000, when Bob Hermann, formerly in the Department of Mathematics at MIT, sent to Van Hove's son Michel his view on the thesis: "I would consider it as one of the most important mathematical physics papers of the past fifty years, containing the key ideas for what has become known as 'geometric quantization.'" Indeed, the thesis is interesting both to historians of science and to theoretical physicists and mathematicians exploring the relationships between quantum and classical physics, based on the Hilbert-space approach to classical mechanics.