Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Hilbert-type inequalities, including Hilbert's inequalities proved in 1908, Hardy-Hilbert-type inequalities proved in 1934, and Yang-Hilbert-type inequalities first proved around 1998, play an important role in analysis and its applications. These inequalities are mainly divided in three classes: integral, discrete and half-discrete. During the last twenty years, there have been many research advances on Hilbert-type inequalities, and especially on Yang-Hilbert-type inequalities.In the present monograph, applying weight functions, the idea of parametrization as well as techniques of real analysis and functional analysis, we prove some new Hilbert-type integral inequalities as well as their reverses with parameters. These inequalities constitute extensions of the well-known Hardy-Hilbert integral inequality. The equivalent forms and some equivalent statements of the best possible constant factors associated with several parameters are considered. Furthermore, we also obtain the operator expressions with the norm and some particular inequalities involving the Riemann-zeta function and the Hurwitz-zeta function. In the form of applications, by means of the beta function and the gamma function, we use the extended Hardy-Hilbert integral inequalities to consider several Hilbert-type integral inequalities involving derivative functions and upper limit functions. In the last chapter, we consider the case of Hardy-type integral inequalities. The lemmas and theorems within provide an extensive account of these kinds of integral inequalities and operators.Efforts have been made for this monograph hopefully to be useful, especially to graduate students of mathematics, physics and engineering, as well as researchers in these domains.