After an introduction to queues in computer networks, this self-contained book covers important random variables, such as Pareto and Poisson, that constitute models for arrival and service disciplines. It then deals with the equilibrium M/M/1/∞queue, which is the simplest queue that is amenable for analysis. Subsequent chapters explore applications of continuous time, state-dependent single Markovian queues, the M/G/1 system, and discrete time queues in computer networks. The author then proceeds to study networks of queues with exponential servers and Poisson external arrivals as well as the G/M/1 queue and Pareto interarrival times in a G/M/1 queue. The last two chapters analyze bursty, self-similar traffic, and fluid flow models and their effects on queues.