•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Practical Automated Machine Learning on Azure

Using Azure Machine Learning to Quickly Build AI Solutions

Deepak Mukunthu, Parashar Shah, Wee Hyong Tok
Livre broché | Anglais
83,45 €
+ 166 points
Livraison 2 à 3 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Develop smart applications without spending days and weeks building machine-learning models. With this practical book, youâ ll learn how to apply Automated Machine Learning, a process that uses machine learning to help people build machine learning models. Deepak Mukunthu, Parashar Shah, and Wee Hyong Tok provide a mix of technical depth, hands-on examples, and case studies that show how customers are solving real-world problems with this technology.

Building machine learning models is an iterative and time-consuming process. Even those who know how to create these models may be limited in how much they can explore. Once you complete this book, youâ ll understand how to apply Automated Machine Learning to your data right away.

  • Learn how companies in different industries are benefiting from Automated Machine Learning
  • Get started with Automated Machine Learning using Azure
  • Explore aspects such as algorithm selection, auto featurization, and hyperparameter tuning
  • Understand how data analysts, BI professionals, and developers can use Automated Machine Learning in their familiar tools and experiences
  • Learn how to get started using Automated Machine Learning for use cases including classification and regression.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
196
Langue:
Anglais

Caractéristiques

EAN:
9781492055594
Date de parution :
29-10-19
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
178 mm x 233 mm
Poids :
322 g

Les avis