Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Principles of Magnetic Resonance Imaging provides a contemporary introduction to the fundamental concepts of MRI, applies these concepts in biomedical applications, and relates these concepts to the latest MRI developments. A unified approach based on spin phase factor averaging is supplied to connect microscopic molecular processes with macroscopic MRI contrasts: relaxation, transport and magnetism. Graphic illustrations of Bloch Equation solutions and various biophysical processes are presented for visualizing abstract ideas. Simplified calculations and specific examples are given for precise appreciation of fundamental concepts. Insightful interpretations and clinical examples are furnished for exemplifying biomedical information in MRI. This book contains three parts: I. Section the body into voxels. Part I describes the Fourier encoding matrix for imaging, its realization in magnetic resonance (MR) using gradient fields, and k-space sampling.II. What's in a voxel? Part II examines the effects of biophysical processes on MRI voxel signal. Spin phase factor averaging over the observation time and voxel space is provided as a unified biophysical model for explaining major MRI contrasts: Proton-proton interaction in a short range defined by local cellular contents (relaxation) causes T2 signal decay and T1 energy loss.Proton motion (transport) including diffusion, perfusion, flow and biomechanical motion can be measured as a phase contrast or signal decay using a gradient field.Electron-proton interaction (magnetism: nonlocal effects of magnetic susceptibility and local effects of chemical shift) can be quantitatively analyzed from MRI signal phase.The connection of MRI contrast physics to tissue molecular contents is conceptualized in the following three terms: 1) cellularity for T2 weighted imaging and diffusion weighted imaging (the latter emphasizing cellular geometry), 2) vascularity for T1 weighted imaging with Gadolinium injection, MR perfusion, and MR angiography, and 3) biomolecularity for MR spectroscopy and magnetic susceptibility imaging.III. How to operate an MRI machine? Part III describes MRI safety issues, hardware, software including advanced imaging methods, MRI scanning, and routine MRI protocols.As examples of applying basic physics concepts, this MRI book further illustrates the latest technological innovations, including: B_(1+)and B_(1-) mapping; Chemical exchange saturation transfer (CEST); Electric property tomography (EPT); Magnetic particle imaging (MPI); MR elastography (MRE); Moving spin tagging including ASL, SPAMM and DENSE; Navigator motion compensation; Parallel or accelerated imaging including SENSE, GRAPPA, compressed sensing and other Bayesian approaches; Quantitative susceptibility mapping (QSM)