Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
This introduction to recent developments in algebraic combinatorics illustrates how research in mathematics actually progresses. The author recounts the dramatic search for and discovery of a proof of a counting formula conjectured in the late 1970s: the number of n x n alternating sign matrices, objects that generalize permutation matrices. While it was apparent that the conjecture must be true, the proof was elusive. As a result, researchers became drawn to this problem and made connections to aspects of the invariant theory of Jacobi, Sylvester, Cayley, MacMahon, Schur, and Young; to partitions and plane partitions; to symmetric functions; to hypergeometric and basic hypergeometric series; and, finally, to the six-vertex model of statistical mechanics. This volume is accessible to anyone with a knowledge of linear algebra, and it includes extensive exercises and Mathematica programs to help facilitate personal exploration. Students will learn what mathematicians actually do in an interesting and new area of mathematics, and even researchers in combinatorics will find something unique within Proofs and Confirmations.