Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
85,45 €
+ 170 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Personalized recommender systems have become indispensable in today's online world. Most of today's recommendation algorithms are data-driven and based on behavioral data. While such systems can produce useful recommendations, they are often uninterpretable, black-box models that do not incorporate the underlying cognitive reasons for user behavior in the algorithms' design. This survey presents a thorough review of the state of the art of recommender systems that leverage psychological constructs and theories to model and predict user behavior and improve the recommendation process - so-called psychology-informed recommender systems. The survey identifies three categories of psychology-informed recommender systems: cognition-inspired, personality-aware, and affectaware recommender systems. For each category, the authors highlight domains in which psychological theory plays a key role. Further, they discuss selected decision-psychological phenomena that impact the interaction between a user and a recommender. They also focus on related work that investigates the evaluation of recommender systems from the user perspective and highlight user-centric evaluation frameworks, and potential research tasks for future work at the end of this survey.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
122
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9781680838442
Date de parution :
15-07-21
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
181 g

Les avis