Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
Vous voulez être sûr que vos cadeaux seront sous le sapin de Noël à temps? Nos magasins vous accueillent à bras ouverts. La plupart de nos magasins sont ouverts également les dimanches, vous pouvez vérifier les heures d'ouvertures sur notre site.
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Python Advanced Guide to Artificial Intelligence

Advanced Guide to Artificial Intelligence: Expert machine learning systems and intelligent agents using Python

Giuseppe Bonaccorso, Armando Fandango, Rajalingappaa Shanmugamani
Livre broché | Anglais
57,45 €
+ 114 points
Livraison 1 à 2 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Demystify the complexity of machine learning techniques and create evolving, clever solutions to solve your problems


Key Features:

  • Master supervised, unsupervised, and semi-supervised ML algorithms and their implementation
  • Build deep learning models for object detection, image classification, similarity learning, and more
  • Build, deploy, and scale end-to-end deep neural network models in a production environment


Book Description:

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries.


You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more.


By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems


This Learning Path includes content from the following Packt products:

- Mastering Machine Learning Algorithms by Giuseppe Bonaccorso

- Mastering TensorFlow 1.x by Armando Fandango

- Deep Learning for Computer Vision by Rajalingappaa Shanmugamani


What you will learn:

  • Explore how an ML model can be trained, optimized, and evaluated
  • Work with Autoencoders and Generative Adversarial Networks
  • Explore the most important Reinforcement Learning techniques
  • Build end-to-end deep learning (CNN, RNN, and Autoencoders) models


Who this book is for:

This Learning Path is for data scientists, machine learning engineers, artificial intelligence engineers who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model.


You will encounter the advanced intricacies and complex use cases of deep learning and AI. A basic knowledge of programming in Python and some understanding of machine learning concepts are required to get the best out of this Learning Path.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
764
Langue:
Anglais

Caractéristiques

EAN:
9781789957211
Date de parution :
12-12-18
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
190 mm x 235 mm
Poids :
1288 g

Les avis