En raison d'une grêve chez bpost, votre commande pourrait être retardée. Vous avez besoin d’un livre rapidement ? Nos magasins vous accueillent à bras ouverts !
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
En raison de la grêve chez bpost, votre commande pourrait être retardée. Vous avez besoin d’un livre rapidement ? Nos magasins vous accueillent à bras ouverts !
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

R Deep Learning Essentials

Explore deep learning algorithms that make use of unsupervised learning for machines with R

Joshua F Wiley
Livre broché | Anglais
44,95 €
+ 89 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Build automatic classification and prediction models using unsupervised learning

About this book
  • Harness the ability to build algorithms for unsupervised data using deep learning concepts with R
  • Master the common problems faced such as overfitting of data, anomalous datasets, image recognition, and performance tuning while building the models
  • Build models relating to neural networks, prediction and deep prediction
Book description

Deep learning is a branch of machine learning based on a set of algorithms that attempt to model high-level abstractions in data by using model architectures. With the superb memory management and the full integration with multi-node big data platforms, the H2O engine has become more and more popular among data scientists in the field of deep learning. This book will introduce you to the deep learning package H2O with R and help you understand the concepts of deep learning. We will start by setting up important deep learning packages available in R and then move towards building models related to neural networks, prediction, and deep prediction, all of this with the help of real-life examples.

After installing the H2O package, you will learn about prediction algorithms. Moving ahead, concepts such as overfitting data, anomalous data, and deep prediction models are explained. Finally, the book will cover concepts relating to tuning and optimizing models.

What you will learn
  • Set up the R package H2O to train deep learning models
  • Understand the core concepts behind deep learning models
  • Use Autoencoders to identify anomalous data or outliers
  • Predict or classify data automatically using deep neural networks
  • Build generalizable models using regularization to avoid overfitting the training data

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
170
Langue:
Anglais

Caractéristiques

EAN:
9781785280580
Date de parution :
29-03-16
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
190 mm x 235 mm
Poids :
303 g

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.