En raison d'une grêve chez bpost, votre commande pourrait être retardée. Vous avez besoin d’un livre rapidement ? Nos magasins vous accueillent à bras ouverts !
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
En raison de la grêve chez bpost, votre commande pourrait être retardée. Vous avez besoin d’un livre rapidement ? Nos magasins vous accueillent à bras ouverts !
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Real-World Machine Learning

Henrick Brink, Joesph Richards, Mark Fetherolf
Livre broché | Anglais
68,95 €
+ 137 points
Format
Livraison 1 à 2 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

DESCRIPTION

In a world where big data is the norm and near-real-time decisions are crucial, machine learning (ML) is a critical component of the data workflow. Machine learning systems can quickly crunch massive amounts of information to offer insights and make decisions in a way that matches or even surpasses human cognitive abilities. These systems use sophisticated computational and statistical tools to build models that can recognize and visualize patterns, predict outcomes, forecast values, and make recommendations.

Real-World Machine Learning is a practical guide designed to teach developers the art of ML project execution. The book introduces the day-to-day practice of machine learning and prepares readers to successfully build and deploy powerful ML systems. Using the Python language and the R statistical package, it starts with core concepts like data acquisition and modeling, classification, and regression. Then it moves through the most important ML tasks, like model validation, optimization and feature engineering. It uses real-world examples that help readers anticipate and overcome common pitfalls. Along the way, they will discover scalable and online algorithms for large and streaming data sets. Advanced readers will appreciate the in-depth discussion of enhanced ML systems through advanced data exploration and pre-processing methods.

KEY FEATURES
  • Accessible and practical introduction to machine learning
  • Contains big-picture ideas and real-world examples
  • Prepares reader to build and deploy powerful predictive systems
  • Offers tips & tricks and highlights common pitfalls
AUDIENCE

Code examples are in Python and R. No prior machine learning experience required.

ABOUT THE TECHNOLOGY

Machine learning has gained prominence due to the overwhelming successes of Google, Microsoft, Amazon, LinkedIn, Facebook, and others in their use of ML. The Gartner report predicts that big data analytics will be a $25 billion market by 2017, and financial firms, marketing organizations, scientific facilities, and Silicon Valley startups are all demanding machine learning skills from their developers.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
264
Langue:
Anglais

Caractéristiques

EAN:
9781617291920
Date de parution :
29-09-16
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
185 mm x 231 mm
Poids :
453 g

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.