Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
In the last two decades, the field of inverse problems has certainly been one of the fastest growing areas in applied mathematics. This growth has largely been driven by the needs of applications both in other sciences and in industry. In Chapter 1, we will give a short overview over some classes of inverse problems of practical interest. Like everything in this book, this overview is far from being complete and quite subjective. As will be shown, inverse problems typically lead to mathematical models that are not well-posed in the sense of Hadamard, i.e., to ill-posed problems. This means especially that their solution is unstable under data perturbations. Numerical meth- ods that can cope with this problem are the so-called regularization methods. This book is devoted to the mathematical theory of regularization methods. For linear problems, this theory can be considered to be relatively complete and will be de- scribed in Chapters 2 - 8. For nonlinear problems, the theory is so far developed to a much lesser extent. We give an account of some of the currently available results, as far as they might be of lasting value, in Chapters 10 and 11. Although the main emphasis of the book is on a functional analytic treatment in the context of operator equations, we include, for linear problems, also some information on numerical aspects in Chapter 9.