Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
We deal with robust spectral density estimation and its application to the analysis of heart rate variability. As classical spectral density estimators are sensitive to outlying observations, robustness is an issue. Hence, we focus on the problem of estimating the spectral density function robustly and present different methods, existing and new ones, that are resistant to outliers. In order to get a reliable estimate of the spectral density function, that is insensitive to outlying observations, it turned out that cleaning the time series in a robust way first and calculating the spectral density function afterwards leads to encouraging results. The data-cleaning operation wherein the robustness is introduced, is accomplished by a robustified version of the Kalman filter. In addition a new multivariate approximate conditional-mean type filter for state-space models is proposed. All presented methods are implemented in the open source language R and compared by extensive simulation studies. The most competitive method is also applied to actual heart rate variability data of diabetic patients with different degrees of cardiovascular autonomic neuropathy.