Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Large amount of data have been collected routinely in the course of day-to-day work in different fields. Typically, the datasets constantly grow accumulating a large number of features, which are not equally important in decision-making. Rough set theory (RST)recently becomes very popular in dimensionality reduction and feature selection of large datasets. The RST approach to feature selection is used to determine a subset of features (or attributes) called reduct which can predict the decision concepts. In reality, there are multiple reducts in a given information system used for developing classifiers, amongst which the best performer is chosen as the final solution to the problem. Selecting a reduct with good performance is time expensive, as there might be many reducts of a given dataset. Therefore, obtaining a best performer classifier is not practical rather ensemble of different classifiers may lead to better classification accuracy. However, combining large number of classifiers increases complexity of the system. The work trades off between these two approaches and creates an efficient ensemble classifier.