Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
In many problems arising in engineering and science one requires approxi- tion methods to reproduce physical reality as well as possible. Very schema- cally, if the input data represents a complicated discrete/continuous quantity of information, of "shape" S (S could mean, for example, that we have a "monotone/convex" collection of data), then one desires to represent it by the less-complicated output information, that "approximates well" the input data and, in addition, has the same "shape" S. This kind of approximation is called "shape-preserving approximation" and arises in computer-aided geometric design, robotics, chemistry, etc. Typically, the input data is represented by a real or complex function (of one or several variables), and the output data is chosen to be in one of the classes polynomial, spline, or rational functions. The present monograph deals in Chapters 1-4 with shape-preserving - proximation by real or complex polynomials in one or several variables. Chapter 5 is an exception and is devoted to some related important but n- polynomial andnonsplineapproximations preservingshape.Thesplinecaseis completely excluded in the present book, since on the one hand, many details concerning shape-preserving properties of splines can be found, for example, in the books of de Boor [49], Schumaker [344], Chui [69], DeVore-Lorentz [91], Kvasov [218] and in the surveys of Leviatan [229], Koci´ c-Milovanovi´ c [196], while on the other hand, we consider that shape-preserving approximation by splines deserves a complete study in a separate book.