Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Soil organic carbon (SOC) is an important and reliable indicator of soil quality. In this study, soil spectra were characterized and analyzed to predict the spatial SOC content, using multivariate predictive modeling technique-artificial neural network (ANN). EO1-Hyperion (400 - 2500 nm) hyper-spectral image, field and laboratory scale data sets (350 - 2500 nm) were generated, consisting of laboratory estimated SOC content of collected soil samples (dependent variable) and their corresponding reflection data of SOC sensitive spectral bands (predictive variables). For each data set, ANN predictive models were developed and three data set (image-scale, field-scale and lab-scale) revealed significant network performances for training, testing and validation, indicating a good network generalization for SOC content. ANN based analysis showed high prediction of SOC content at image (R2 = 0.93, and RPD = 3.19), field (R2 = 0.92 and RPD = 3.17), and lab scale (R2 = 0.95 and RPD = 3.16). Validation results of ANN indicated that predictive models performed well (R2 = 0.90) with RMSE 0.070. The result showed that ANN methods have a great potential for estimating SOC content.