•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Technique
  6. Soil Organic Carbon Mapping Using Hyperspectral Remote Sensing and ANN

Soil Organic Carbon Mapping Using Hyperspectral Remote Sensing and ANN

Sudheer Kumar Tiwari, S. K. Saha, Suresh Kumar
Livre broché | Anglais
35,45 €
+ 70 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Soil organic carbon (SOC) is an important and reliable indicator of soil quality. In this study, soil spectra were characterized and analyzed to predict the spatial SOC content, using multivariate predictive modeling technique-artificial neural network (ANN). EO1-Hyperion (400 - 2500 nm) hyper-spectral image, field and laboratory scale data sets (350 - 2500 nm) were generated, consisting of laboratory estimated SOC content of collected soil samples (dependent variable) and their corresponding reflection data of SOC sensitive spectral bands (predictive variables). For each data set, ANN predictive models were developed and three data set (image-scale, field-scale and lab-scale) revealed significant network performances for training, testing and validation, indicating a good network generalization for SOC content. ANN based analysis showed high prediction of SOC content at image (R2 = 0.93, and RPD = 3.19), field (R2 = 0.92 and RPD = 3.17), and lab scale (R2 = 0.95 and RPD = 3.16). Validation results of ANN indicated that predictive models performed well (R2 = 0.90) with RMSE 0.070. The result showed that ANN methods have a great potential for estimating SOC content.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
60
Langue:
Anglais

Caractéristiques

EAN:
9783330326033
Format:
Livre broché
Dimensions :
150 mm x 220 mm

Les avis