Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
The boundary between soil and atmosphere is an important and active place. It controls to a large extent the flux of nutrients, water, gasses, and heat to and from the underlying soil and so it has a direct and dramatic influence on the conditions of the soil below the interface, the microbes, animals, and plants that live in the soil, and the amount of surface runoff generated from excess rainfall. The upper few millimeters of soil is the gateway to the soil below, and thus it has a direct and dramatic influence on the world around us. While the characteristics of the thin layer at the soil surface are important, they are also very much different from those of the soil underneath. Enormous amounts of energy and very high transient forces are imparted to the soil surface by impacting raindrops which break down aggregates, dislodge soil particles, and compress the upper few millimeters of soil. The physical disruption is aided by chemical processes, including dispersion, which further act to break down soil aggregates and greatly alter the surface characteristics of the soil. The resulting dense surface layer of soil is referred to generally as a surface seal. When the seal dries other physical and chemical factors cause a crust to form, which continues to have a dominating influence on gas, vapor, and heat exchange between soil and atmosphere, as well as an effect on seedling emergence. While soil surface sealing and crusting are certainly functions of local soil properties and climate, the processes are recognized and studied worldwide. At the International Symposium on Soil Crusting: Chemical and Physical Processes , which was held May 30 - June 1, 1991 at the University of Georgia, Athens, Georgia, USA, 37 papers/posters were presented by representatives from every continent. This CATENA SUPPLEMENT includes selected papers from the symposium. The first 4 studies reported here focus on quantifying changes in runoff and erosion amounts as a function of soil surface changes. Le Bissonnais & Bruand studied sealing and crusting on field plots under natural rainfall in Western Europe, and in particular they investigated seasonal differences. Nishimura & Nakano investigated sealing using a rainfall simulator and laboratory soil pans packed with an Andosol from Japan. Both of these studies also included a micromorphological study of the soil surface layer using scanning electron microscopy. Luk &; Cai performed a field study of the sealing and crusting characteristics of a loessial soil from North China, and specifically addressed the issues of how slope gradient and antecedent crusting influenced runoff and soil loss during a storm. Chiang, Radcliffe &; Miller studied the sealing of four soils from the southeastern and mid-western parts of the United States. Particularly interesting was the observation that even these soils, which had relatively high sand contents, experienced reductions in hydraulic conductivity due to surface sealing. The following three papers investigated the effects of dispersion on sealing, structural stability, and infiltration. So h Cook studied the relationships between soil structural stability and hydraulic conductivity using several clay soils from Australia. Rengasamy, Naidu, Chan &: Chartres related results from a modulus of rupture test to exchangeable sodium percentage for several Australian soils. Norton, Shainberg & Bradford showed a reduction in soil dispersion and sealing resulting from application of gypsum to three soils from the eastern United States. Thus they introduce a potential control mechanism for surface sealing problems. The study of Auerswald and that of Zhang &; Miller were designed to delineate the effects of moisture content on soil stability and erosion. Both studies showed that a decrease in soil moisture prior to rain produced a less stable surface and more soil loss for the same amount and intensity of rain. Lehrsch, Sojka, Carter & Jolley