•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Stable Type Asymptotics of Stopping Type Functionals

Defined on Trajectories of the Markov Renewal Process

Myroslav Drozdenko
Livre broché | Anglais
55,45 €
+ 110 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

The book is devoted to the analysis of limit behavior of the normalized stopping type functionals defined on the trajectories of the Markov renewal process. Weak convergence of such functionals is often equivalent to weak convergence of the normalized sums of i.i.d. random variables in the non-triangular-array-mode and therefore corresponding non-concentrated in zero limit processes is of the stable type. In the book under not very restrictive initial assumptions (including assumption of ergodicity of the embedded Markov chain and some quite naturally appearing other assumptions) we describe the class of all possible limit laws and give several variants of the necessary and sufficient conditions of weak convergence to every element from the limit class. After that the results are extended and applied to the analysis of the perturbed thinned flows of rare events. Examples of applications of the presented theoretical results in particular to the risk and the queuing theories are presented. We give also some sketches of extensions of the results to the case of asymptotics of the infinitely divisible type.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
136
Langue:
Anglais

Caractéristiques

EAN:
9783659683008
Format:
Livre broché
Dimensions :
150 mm x 220 mm

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.