Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Statistical Language Models for Information Retrieval systematically and critically reviews the existing work in applying statistical language models to information retrieval, summarizes their contributions, and points out outstanding challenges. Statistical language models have recently been successfully applied to many information retrieval problems. A great deal of recent work has shown that statistical language models not only lead to superior empirical performance, but also facilitate parameter tuning and open up possibilities for modeling non-traditional retrieval problems. In general, statistical language models provide a principled way of modeling various kinds of retrieval problems. Statistical Language Models for Information Retrieval reviews the development of this language modeling approach. It surveys a wide range of retrieval models based on language modeling and attempts to make connections between this new family of models and traditional retrieval models. It summarizes the progress made so far in these models and point out remaining challenges to be solved to further increase their impact. Statistical Language Models for Information Retrieval is written for readers who already have some basic knowledge about information retrieval. Some knowledge of probability and statistics such as the maximum likelihood estimator is helpful, but not a prerequisite to understanding the high-level discussion.