Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
This monograph examines magnetization dynamics at elevated temperatures which can be described by the stochastic Landau-Lifshitz-Gilbert equation (SLLG). The first part of the book studies the role of noise in finite ensembles of nanomagnetic particles: we show geometric ergodicity of a unique invariant measure of Gibbs type and study related properties of approximations of the SLLG, including time discretization and Ginzburg-Landau type penalization. In the second part we propose an implementable space-time discretization using random walks to construct a weak martingale solution of the corresponding stochastic partial differential equation which describes the magnetization process of infinite spin ensembles. The last part of the book is concerned with a macroscopic deterministic equation which describes temperature effects on macro-spins, i.e. expectations of the solutions to the SLLG. Furthermore, comparative computational studies with the stochastic model are included. We use constructive tools such as e.g. finite element methods to derive the theoretical results, which are then used for computational studies. The numerical experiments motivate an interesting interplay between inherent geometric and stochastic effects of the SLLG which still lack a rigorous analytical understanding: the role of space-time white noise, possible finite time blow-up behavior of solutions, long-time asymptotics, and effective dynamics.