Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Covariance matrices have found applications in many diverse areas. These include beamforming in array processing; portfolio analysis in finance; classification of data and the handling of high-frequency data. Structured Robust Covariance Estimation considers the estimation of covariance matrices in non-standard conditions including heavy-tailed distributions and outlier contamination. Prior knowledge on the structure of these matrices is exploited in order to improve the estimation accuracy. The distributions, structures and algorithms are all based on an extension of convex optimization to manifolds. Structured Robust Covariance Estimation also provides a self-contained introduction and survey of the theory known as geodesic convexity. This is a generalized form of convexity associated with positive definite matrix variables. The fundamental g-convex sets and functions are detailed, along with the operations that preserve them, and their application to covariance estimation. This monograph will be of interest to researchers and students working in signal processing, statistics and optimization.