Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
We are concerned here with a service facility consisting of a large (- finite) number of servers in parallel. The service times for all servers are identical, but there is a preferential ordering of the servers. Each newly arriving customer enters the lowest ranked available server and remains there until his service is completed. It is assumed that customers arrive according to a Poisson process of rate A, that all servers have exponentially distributed service times with rate and that a = A/ is large compared with 1. Generally, we are concerned with the stochastic properties of the random function N(s, t) describing the number of busy servers among the first s ordered servers at time t. Most of the analysis is motivated by special applications of this model to telephone traffic. If one has a brunk line with s primary channels, but a large number (00) of secondary (overflow) channels, each newly arriving customer is assigned to one of the primary channels if any are free; otherwise, he is assigned to a secondary channel. The primary and secondary channels themselves could have a preferential ordering. For some purposes, it is convenient to imagine that they did even if an ordering is irrelevant.