Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Man kann einen jeden BegrifJ, einen jeden Titel, darunter viele Erkenntnisse gehoren, einen logischen Ort nennen. Immanuel Kant [258, p. B 324] This book's title subject, The Topos of Music, has been chosen to communicate a double message: First, the Greek word "topos" (r01rex; = location, site) alludes to the logical and transcendental location of the concept of music in the sense of Aristotle's [20, 592] and Kant's [258, p. B 324] topic. This view deals with the question of where music is situated as a concept and hence with the underlying ontological problem: What is the type of being and existence of music? The second message is a more technical understanding insofar as the system of musical signs can be associated with the mathematical theory of topoi, which realizes a powerful synthesis of geometric and logical theories. It laid the foundation of a thorough geometrization of logic and has been successful in central issues of algebraic geometry (Grothendieck, Deligne), independence proofs and intuitionistic logic (Cohen, Lawvere, Kripke). But this second message is intimately entwined with the first since the present concept framework of the musical sign system is technically based on topos theory, so the topos of music receives its top os-theoretic foundation. In this perspective, the double message of the book's title in fact condenses to a unified intention: to unite philosophical insight with mathematical explicitness."