•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous
  1. Accueil
  2. Livres
  3. Sciences humaines
  4. Sciences
  5. Mathématiques
  6. Mathématiques appliquées
  7. Théorie asymptotique des processus aléatoires faiblement dépendants

Théorie asymptotique des processus aléatoires faiblement dépendants

Emmanuel Rio
Livre broché | Français | Mathématiques Et Applications | n° 31
42,45 €
+ 84 points
Livraison sous 1 à 4 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Ces notes sont consacrées aux inégalités et aux théorèmes limites classiques pour les suites de variables aléatoires absolument régulières ou fortement mélangeantes au sens de Rosenblatt. Le but poursuivi est de donner des outils techniques pour l'étude des processus faiblement dépendants aux statisticiens ou aux probabilistes travaillant sur ces processus. Nos résultats et nos preuves sont essentiellement fondés sur des inégalités de covariance et des lemmes de couplage parfois récents, que nous appliquons pour obtenir des théorèmes limites classiques tels que la loi forte des grands nombres avec ou sans vitesses de convergence, le théorème limite central et le théorème limite central fonctionnel pour les sommes partielles normalisées, la loi du logarithme itéré, l'étude des processus empiriques. Enfin nous donnons quelques résultats théoriques sur les relations entre la vitesse d'ergodicité et la vitesse de mélange fort des chaînes de Markov irréductibles.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
169
Langue:
Français
Collection :
Tome:
n° 31

Caractéristiques

EAN:
9783540659792
Date de parution :
29-11-99
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
160 mm x 240 mm
Poids :
276 g

Les avis