Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
This book presents the relationship between classical theta functions and knots. It is based on a novel idea of Răzvan Gelca and Alejandro Uribe, which converts Weil's representation of the Heisenberg group on theta functions to a knot theoretical framework, by giving a topological interpretation to a certain induced representation. It also explains how the discrete Fourier transform can be related to 3- and 4-dimensional topology.Theta Functions and Knots can be read in two perspectives. Readers with an interest in theta functions or knot theory can learn how the two are related. Those interested in Chern-Simons theory will find here an introduction using the simplest case, that of abelian Chern-Simons theory. Moreover, the construction of abelian Chern-Simons theory is based entirely on quantum mechanics and not on quantum field theory as it is usually done.Both the theory of theta functions and low dimensional topology are presented in detail, in order to underline how deep the connection between these two fundamental mathematical subjects is. Hence the book is self-contained with a unified presentation. It is suitable for an advanced graduate course, as well as for self-study.