Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
The book entitled 'Topology and Functional Analysis' contains twelve chapters. This book contains countable and uncountable sets. examples and related theorems. cardinal numbers and related theorems. topological spaces and examples. open sets and limit points. derived sets. closed sets and closure operators. interior, exterior and boundary operators. neighbourhoods, bases and relative topologies. connected sets and components. compact and countably compact spaces. continuous functions, and homeomorphisms.sequences. axioms of countability. Separability. regular and normal spaces. Urysohn's lemma. Tietze extension theorem. completely regular spaces. completely normal spaces. compactness for metric spaces. properties of metric spaces. quotient topology. Nets and Filters. product topology : finite products, product invariant properties, metric products , Tichonov topology, Tichonov theorem. locally finite topological spaces. paracompact spaces, Urysohn's metrization theorem. normed spaces, Banach spaces, properties of normed spaces. finite dimensional normed spaces and subspaces. compactness and finite dimension. bounded and continuous linear operators,inner product spaces.