Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Adjoint-based techniques can provide the sensitivity of an objective function to any number of parameters of a simulation inexpensively at roughly the cost of a single additional flow calculation. This information can be used to perform sensitivity analyses, aerodynamic shape optimization, and to estimate the error in an objective function due to the numerical discretization. Existing approaches to derive the numerically discretized adjoint equations involve the so-called discrete and continuous methods, which differ in the order at which the discretization and linearization steps are performed. The effect of these contrasting approaches is that they have both strengths and weaknesses over each other in the form of the complexity of the formulation and the computational expense of the solution. In this work a hybrid approach is developed that combines elements of the continuous and discrete methods with the intention of capturing the advantages of both: reducing the time spent on mathematical derivation of the continuous adjoint equations, lowering the computational requirements of the discrete adjoint equations, and generally improving the quality of the adjoint solution.