Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Bereits seit längerer Zeit hat sich die additive Zahlentheorie als gesonderter Zweig innerhalb der Zahlentheorie herausgebildet; aber erst in den letzten Jahrzehnten hat dieses Gebiet neue Antriebe erhalten. In der klassischen additiven Zahlentheorie waren die Untersuchungs- objekte im wesentlichen solche Fragestellungen, die an ganz spezielle Zahlenmengen geknüpft sind, wie etwa das GOLDBAcHsche oder das WARINGSche Problem. Diese bei den Probleme waren es aber auch, die den Anstoß zu einer neuen Entwicklung in der additiven Zahlentheorie gaben, als 1930 SCHNIRELMANN in seiner fundamentalen Arbeit "über additive Eigenschaften von Zahlen" [lJ einen neuen Zugang zu den ge- nannten Problemen fand. SCHNIRELMANN entwickelte nämlich zunächst eine Theorie, die ganz von der speziellen Natur der Primzahlen bzw. der k-ten Potenzen absah und sich allgemein auf Mengen natürlicher Zahlen bezog. Jeder solchen Menge wird eine reelle Zahl, die "Dichte" zuge- ordnet, die in gewissem Sinn ein Maß dafür ist, welcher Anteil aus der Gesamtheit aller natürlichen Zahlen der gegebenen Menge angehört. An Stelle der arithmetischen Natur der Zahlenmenge tritt also ein in dieser Weise zu verstehender metrischer Gesichtspunkt. Indem ferner noch die Summe solcher Mengen eingeführt wurde, zeigte sich, daß bereits in großer Allgemeinheit wesentliche Aussagen gemacht werden konnten. In Anschluß an SCHNIRELMANN hat diese allgemeine Theorie der Zahl- mengen immer neue Impulse erhalten; somit schien für den vorliegen- den Bericht ziemlich zwangsläufig eine grobe Gliederung durch die Stichworte "Summe", "Dichte", bzw. "spezielle Mengen" gegeben zu sein.