En raison d'une grêve chez bpost, votre commande pourrait être retardée. Vous avez besoin d’un livre rapidement ? Nos magasins vous accueillent à bras ouverts !
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
En raison de la grêve chez bpost, votre commande pourrait être retardée. Vous avez besoin d’un livre rapidement ? Nos magasins vous accueillent à bras ouverts !
  •  Retrait gratuit dans votre magasin Club
  •  7.000.0000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Behavior Analysis with Machine Learning Using R

Enrique Garcia Ceja
Livre broché | Anglais | Chapman & Hall/CRC the R
62,45 €
+ 124 points
Format
Livraison 1 à 2 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Behavior Analysis with Machine Learning Using R introduces machine learning and deep learning concepts and algorithms applied to a diverse set of behavior analysis problems. It focuses on the practical aspects of solving such problems based on data collected from sensors or stored in electronic records. The included examples demonstrate how to perform common data analysis tasks such as: data exploration, visualization, preprocessing, data representation, model training and evaluation. All of this, using the R programming language and real-life behavioral data. Even though the examples focus on behavior analysis tasks, the covered underlying concepts and methods can be applied in any other domain. No prior knowledge in machine learning is assumed. Basic experience with R and basic knowledge in statistics and high school level mathematics are beneficial.

Features:

  • Build supervised machine learning models to predict indoor locations based on WiFi signals, recognize physical activities from smartphone sensors and 3D skeleton data, detect hand gestures from accelerometer signals, and so on.

  • Program your own ensemble learning methods and use Multi-View Stacking to fuse signals from heterogeneous data sources.

  • Use unsupervised learning algorithms to discover criminal behavioral patterns.

  • Build deep learning neural networks with TensorFlow and Keras to classify muscle activity from electromyography signals and Convolutional Neural Networks to detect smiles in images.

  • Evaluate the performance of your models in traditional and multi-user settings.

  • Build anomaly detection models such as Isolation Forests and autoencoders to detect abnormal fish behaviors.

This book is intended for undergraduate/graduate students and researchers from ubiquitous computing, behavioral ecology, psychology, e-health, and other disciplines who want to learn the basics of machine learning and deep learning and for the more experienced individuals who want to apply machine learning to analyze behavioral data.

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
400
Langue:
Anglais
Collection :

Caractéristiques

EAN:
9781032067056
Date de parution :
29-01-24
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
156 mm x 234 mm
Poids :
603 g

Les avis

Nous publions uniquement les avis qui respectent les conditions requises. Consultez nos conditions pour les avis.