Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Mit Fortschreiten der Automatisierung in der industriellen Fertigung werden Verfahren benötigt, um nicht nur die Fertigung an sich mittels Aktoren wie präzise arbeitende Roboterarme zu automatisieren, sondern auch Methoden, um eine automatisierte Qualitätssicherung zu realisieren. Oft werden dazu Kameras eingesetzt. Eine nachgelagerte Softwarekomponente wertet infolgedessen die aufgenommenen Bilddaten mithilfe bestimmter Algorithmen aus. Zur Auswertung können lernbasierte Verfahren wie die Künstlichen Neuronalen Netzwerke genutzt werden. Diese zeigen in der Praxis eine sehr gute Performanz in vielen unterschiedlichen Problemdomänen. Dennoch haben diese Modelle den Nachteil, dass sie sich wie eine Blackbox verhalten. Das heißt, dass es oft nicht möglich ist, deren genaue interne Funktionsweise oder das Ergebnis der Klassifikation wie bei regelbasierten Verfahren nachzuvollziehen.In der vorliegenden Arbeit werden Lösungen für die Qualitätssicherung von Produktionsprozessen exemplarisch an einem Fertigungsprozess aus der Automobilzulieferer-Branche präsentiert. Es wird ein Versuchsaufbau mit zwei auf die Szenerie gerichteten Kameras vorgestellt. Für die Fusionierung und Klassifizierung der Informationen aus dem aufgenommenen Bildpaar wird ein neuartiges Fusionsnetzwerk, basierend auf faltenden neuronalen Netzwerken, vorgeschlagen. Um die interne Funktionsweise der Fusionsnetzwerke besser nachvollziehen zu können, wurden neue, innovative Methoden zur Analyse solcher angelernten Modelle entwickelt. Im letzten thematischen Teil der Arbeit werden Netzwerkstrukturen zur bedingten künstlichen Generierung von Bildpaaren vorgestellt und der Mehrwert von synthetischen Daten für das Training von Künstlichen Neuronalen Netzwerken am Beispiel der untersuchten Applikation diskutiert.