•  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous     
  •  Retrait gratuit dans votre magasin Club
  •  7.000.000 titres dans notre catalogue
  •  Payer en toute sécurité
  •  Toujours un magasin près de chez vous

Blueprints for Text Analytics Using Python

Machine Learning-Based Solutions for Common Real World (Nlp) Applications

Jens Albrecht, Sidharth Ramachandran, Christian Winkler
Livre broché | Anglais
89,45 €
+ 178 points
Livraison 1 à 2 semaines
Passer une commande en un clic
Payer en toute sécurité
Livraison en Belgique: 3,99 €
Livraison en magasin gratuite

Description

Turning text into valuable information is essential for businesses looking to gain a competitive advantage. With recent improvements in natural language processing (NLP), users now have many options for solving complex challenges. But it's not always clear which NLP tools or libraries would work for a business's needs, or which techniques you should use and in what order.

This practical book provides data scientists and developers with blueprints for best practice solutions to common tasks in text analytics and natural language processing. Authors Jens Albrecht, Sidharth Ramachandran, and Christian Winkler provide real-world case studies and detailed code examples in Python to help you get started quickly.

  • Extract data from APIs and web pages
  • Prepare textual data for statistical analysis and machine learning
  • Use machine learning for classification, topic modeling, and summarization
  • Explain AI models and classification results
  • Explore and visualize semantic similarities with word embeddings
  • Identify customer sentiment in product reviews
  • Create a knowledge graph based on named entities and their relations

Spécifications

Parties prenantes

Auteur(s) :
Editeur:

Contenu

Nombre de pages :
422
Langue:
Anglais

Caractéristiques

EAN:
9781492074083
Date de parution :
12-01-21
Format:
Livre broché
Format numérique:
Trade paperback (VS)
Dimensions :
178 mm x 234 mm
Poids :
680 g

Les avis