Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
What could be regarded as the beginning of a theory of commutators AB - BA of operators A and B on a Hilbert space, considered as a dis- cipline in itself, goes back at least to the two papers of Weyl [3] {1928} and von Neumann [2] {1931} on quantum mechanics and the commuta- tion relations occurring there. Here A and B were unbounded self-adjoint operators satisfying the relation AB - BA = iI, in some appropriate sense, and the problem was that of establishing the essential uniqueness of the pair A and B. The study of commutators of bounded operators on a Hilbert space has a more recent origin, which can probably be pinpointed as the paper of Wintner [6] {1947}. An investigation of a few related topics in the subject is the main concern of this brief monograph. The ensuing work considers commuting or "almost" commuting quantities A and B, usually bounded or unbounded operators on a Hilbert space, but occasionally regarded as elements of some normed space. An attempt is made to stress the role of the commutator AB - BA, and to investigate its properties, as well as those of its components A and B when the latter are subject to various restrictions. Some applica- tions of the results obtained are made to quantum mechanics, perturba- tion theory, Laurent and Toeplitz operators, singular integral trans- formations, and Jacobi matrices.