Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Nous utilisons des cookies dans le but suivant :
Assurer le bon fonctionnement du site web, améliorer la sécurité et prévenir la fraude
Avoir un aperçu de l'utilisation du site web, afin d'améliorer son contenu et ses fonctionnalités
Pouvoir vous montrer les publicités les plus pertinentes sur des plateformes externes
Gestion des cookies
Club utilise des cookies et des technologies similaires pour faire fonctionner correctement le site web et vous fournir une meilleure expérience de navigation.
Ci-dessous vous pouvez choisir quels cookies vous souhaitez modifier :
Cookies techniques et fonctionnels
Ces cookies sont indispensables au bon fonctionnement du site internet et vous permettent par exemple de vous connecter. Vous ne pouvez pas désactiver ces cookies.
Cookies analytiques
Ces cookies collectent des informations anonymes sur l'utilisation de notre site web. De cette façon, nous pouvons mieux adapter le site web aux besoins des utilisateurs.
Cookies marketing
Ces cookies partagent votre comportement sur notre site web avec des parties externes, afin que vous puissiez voir des publicités plus pertinentes de Club sur des plateformes externes.
Une erreur est survenue, veuillez réessayer plus tard.
Il y a trop d’articles dans votre panier
Vous pouvez encoder maximum 250 articles dans votre panier en une fois. Supprimez certains articles de votre panier ou divisez votre commande en plusieurs commandes.
Optimization is an integral part to science and engineering. Most real-world applications involve complex optimization processes, which are di?cult to solve without advanced computational tools. With the increasing challenges of ful?lling optimization goals of current applications there is a strong drive to advancethe developmentofe?cientoptimizers. The challengesintroduced by emerging problems include: - objective functions which are prohibitively expensive to evaluate, so ty- callysoonlyasmallnumber ofobjectivefunctionevaluationscanbemade during the entire search, - objective functions which are highly multimodal or discontinuous, and - non-stationary problems which may change in time (dynamic). Classical optimizers may perform poorly or even may fail to produce any improvement over the starting vector in the face of such challenges. This has motivated researchers to explore the use computational intelligence (CI) to augment classical methods in tackling such challenging problems. Such methods include population-based search methods such as: a) evolutionary algorithms and particle swarm optimization and b) non-linear mapping and knowledgeembedding approachessuchasarti?cialneuralnetworksandfuzzy logic, to name a few. Such approaches have been shown to perform well in challenging settings. Speci?cally, CI are powerful tools which o?er several potential bene?ts such as: a) robustness (impose little or no requirements on the objective function) b) versatility (handle highly non-linear mappings) c) self-adaptionto improveperformance and d) operationin parallel(making it easy to decompose complex tasks). However, the successful application of CI methods to real-world problems is not straightforward and requires both expert knowledge and trial-and-error experiments.